USING OMI NO₂ OBSERVATIONS TO EVALUATE NO_x EMISSION TRENDS OVER CHINA: INFLUENCE OF CHEMISTRY Viral Shah (Harvard) D.J. Jacob, K. Li, R.F. Silvern, S. Zhai (Harvard) M. Liu, J.T. Lin (Peking), Q. Zhang (Tsinghua) Aura Science Team Meeting August 27, 2019 ## NO₂ VCD over eastern China dropped after 2011 — effect of environmental policies ### But NO₂ VCD trends are steeper than NO_x emissions trends QA4ECV retrieval: Boersma et al., 2018 MEIC emissions: Zheng et al., 2018 Why do NO₂ VCD and NO_x emission trends differ? # NO₂ concentrations depend on NO_x emissions and chemistry NO_x chemistry differs between day and night, and from summer to winter HO_x and O₃ levels partly depend on NO_x, making chemistry nonlinear # NO₂ concentrations depend on NO_x emissions and chemistry NO_x chemistry differs between day and night, and from summer to winter HO_x and O₃ levels partly depend on NO_x making chemistry nonlinear #### GEOS-Chem NO₂ columns consistent with QA4ECV #### GEOS-Chem NO_x lifetime in DJF 3x longer than in JJA ### DJF NO_x lifetime shortens at lower NO_x emissions; constant JJA lifetime GEOS-Chem NO_x lifetime ### Nighttime O₃ increases at lower NO_x emissions, shortens DJF NO_x lifetime At low NO emissions, less O₃ consumed And, more O₃ available ### JJA NO₂ trends confirm MEIC NO_x emissions trends; DJF NO₂ decreases faster than emissions Summer and winter OMI NO₂ trends differ Summer OMI NO₂ trends consistent with MEIC Winter OMI NO₂ trends affected by NO_x lifetime changes #### CONCLUSION JJA: NO₂ columns respond linearly to NO_x emissions; OMI NO₂ observations verify MEIC inventory DJF: NO₂ columns change faster than NO_x emissions because of change in NO_x lifetime